On initial data in the problem of consistency on cubic lattices for 3 x 3 determinants

نویسنده

  • Oleg I. Mokhov
چکیده

The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3 × 3 determinants. The discrete nonlinear equations on Z defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z that form elementary 3 × 3 squares vanish are considered; some explicit concrete conditions of general position on initial data are formulated; and for arbitrary initial data satisfying these concrete conditions of general position, theorems on consistency on cubic lattices (a consistency “around a cube”) for the considered discrete nonlinear equations on Z defined by 3× 3 determinants are proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Initial Data in the Problem of Consistency on Cubic Lattices for $3 \times 3$ Determinants

The paper is devoted to complete proofs of theorems on consistency on cubic lattices for 3 × 3 determinants. The discrete nonlinear equations on Z defined by the condition that the determinants of all 3×3 matrices of values of the scalar field at the points of the lattice Z that form elementary 3 × 3 squares vanish are considered; some explicit concrete conditions of general position on initial...

متن کامل

Consistency on cubic lattices for determinants of arbitrary orders

We consider a special class of two-dimensional discrete equations defined by relations on elementary N ×N squares, N > 2, of the square lattice Z, and propose a new type of consistency conditions on cubic lattices for such discrete equations that is connected to bending elementary N × N squares, N > 2, in the cubic lattice Z. For an arbitrary N we prove such consistency on cubic lattices for tw...

متن کامل

On the Dimer Problem and the Ising Problem in Finite 3-dimensional Lattices

We present a new expression for the partition function of the dimer arrangements and the Ising partition function of the 3-dimensional cubic lattice. We use the Pfaffian method. The partition functions are expressed by means of expectations of determinants and Pfaffians of matrices associated with the cubic lattice.

متن کامل

A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION

Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1101.4355  شماره 

صفحات  -

تاریخ انتشار 2011